Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
2.
Nucleic Acids Res ; 50(W1): W330-W336, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35641095

RESUMO

Recent advances in the field of high throughput (meta-)transcriptomics and proteomics call for easy and rapid methods enabling to explore not only single genes or proteins but also extended biological systems. Gene set enrichment analysis is commonly used to find relations in a set of genes and helps to uncover the biological meaning in results derived from high-throughput data. The basis for gene set enrichment analysis is a solid functional classification of genes. Here, we describe a comprehensive database containing multiple functional classifications of genes of all (>55 000) publicly available complete bacterial genomes. In addition to the most common functional classes such as COG and GO, also KEGG, InterPro, PFAM, eggnog and operon classes are supported. As classification data for features is often not available, we offer fast annotation and classification of proteins in any newly sequenced bacterial genome. The web server FUNAGE-Pro enables fast functional analysis on single gene sets, multiple experiments, time series data, clusters, and gene network modules for any prokaryote species or strain. FUNAGE-Pro is freely available at http://funagepro.molgenrug.nl.


Assuntos
Computadores , Redes Reguladoras de Genes , Genes Bacterianos , Internet , Células Procarióticas , Software , Células Procarióticas/classificação , Células Procarióticas/metabolismo , Proteômica , Genoma Bacteriano/genética , Proteínas de Bactérias/genética , Anotação de Sequência Molecular , Fatores de Tempo , Família Multigênica
3.
Nucleic Acids Res ; 50(D1): D785-D794, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34520557

RESUMO

The Genome Taxonomy Database (GTDB; https://gtdb.ecogenomic.org) provides a phylogenetically consistent and rank normalized genome-based taxonomy for prokaryotic genomes sourced from the NCBI Assembly database. GTDB R06-RS202 spans 254 090 bacterial and 4316 archaeal genomes, a 270% increase since the introduction of the GTDB in November, 2017. These genomes are organized into 45 555 bacterial and 2339 archaeal species clusters which is a 200% increase since the integration of species clusters into the GTDB in June, 2019. Here, we explore prokaryotic diversity from the perspective of the GTDB and highlight the importance of metagenome-assembled genomes in expanding available genomic representation. We also discuss improvements to the GTDB website which allow tracking of taxonomic changes, easy assessment of genome assembly quality, and identification of genomes assembled from type material or used as species representatives. Methodological updates and policy changes made since the inception of the GTDB are then described along with the procedure used to update species clusters in the GTDB. We conclude with a discussion on the use of average nucleotide identities as a pragmatic approach for delineating prokaryotic species.


Assuntos
Archaea/classificação , Bactérias/classificação , Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Software , Archaea/genética , Bactérias/genética , Sequência de Bases , Internet , Metagenoma , Filogenia , Células Procarióticas/classificação , Células Procarióticas/citologia , Células Procarióticas/metabolismo
4.
Nucleic Acids Res ; 50(D1): D801-D807, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34634793

RESUMO

Microbial systematics is heavily influenced by genome-based methods and challenged by an ever increasing number of taxon names and associated sequences in public data repositories. This poses a challenge for database systems, particularly since it is obviously advantageous if such data are based on a globally recognized approach to manage names, such as the International Code of Nomenclature of Prokaryotes. The amount of data can only be handled if accurate and reliable high-throughput platforms are available that are able to both comply with this demand and to keep track of all changes in an efficient and flexible way. The List of Prokaryotic names with Standing in Nomenclature (LPSN) is an expert-curated authoritative resource for prokaryotic nomenclature and is available at https://lpsn.dsmz.de. The Type (Strain) Genome Server (TYGS) is a high-throughput platform for accurate genome-based taxonomy and is available at https://tygs.dsmz.de. We here present important updates of these two previously introduced, heavily interconnected platforms for taxonomic nomenclature and classification, including new high-level facilities providing access to bioinformatic algorithms, a considerable expansion of the database content, and new ways to easily access the data.


Assuntos
Algoritmos , Bases de Dados Genéticas , Células Procarióticas/classificação , Software , Biologia Computacional/métodos , Humanos , Internet , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Terminologia como Assunto
5.
Artigo em Inglês | MEDLINE | ID: mdl-34191704

RESUMO

The Editorial Board for the International Code of Nomenclature of Prokaryotes (ICNP) has compiled proposed revisions of the ICNP. As outlined previously (Oren et al., Int J Syst Evol Microbiol 2021;71:004598; https://doi.org/10.1099/ijsem.0.004598) and to comply with Articles 13(b)(4) and 4(d) of the statutes of the International Committee on Systematics of Prokaryotes, a public discussion of the document will start on 1 July 2021, to last for 6 months. Here, we present the procedure for this discussion.


Assuntos
Classificação , Células Procarióticas/classificação , Terminologia como Assunto
6.
Artigo em Inglês | MEDLINE | ID: mdl-34161220

RESUMO

Following the International Committee on Systematics of Prokaryotes electronic discussion and vote on proposals to include the rank of phylum in the rules of the International Code of Nomenclature of Prokaryotes, we here announce the results of the ballot. We also present draft versions of the emended Rules 5b, 8, 15 and 22, based on the outcome of the ballot, to be included in the proposal for the preparation of a new revision of the International Code of Nomenclature of Prokaryotes.


Assuntos
Filogenia , Células Procarióticas/classificação , Terminologia como Assunto
7.
J Microbiol ; 59(5): 476-480, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33907973

RESUMO

The average amino acid identity (AAI) is an index of pairwise genomic relatedness, and multiple studies have proposed its application in prokaryotic taxonomy and related disciplines. AAI demonstrates better resolution in elucidating taxonomic structure beyond the species rank when compared with average nucleotide identity (ANI), which is a standard criterion in species delineation. However, an efficient and easy-to-use computational tool for AAI calculation in large-scale taxonomic studies is not yet available. Here, we introduce a bioinformatic pipeline, named EzAAI, which allows for rapid and accurate AAI calculation in prokaryote sequences. The EzAAI tool is based on the MMSeqs2 program and computes AAI values almost identical to those generated by the standard BLAST algorithm with significant improvements in the speed of these evaluations. Our pipeline also provides a function for hierarchical clustering to create dendrograms, which is an essential part of any taxonomic study. EzAAI is available for download as a standalone JAVA program at http://leb.snu.ac.kr/ezaai .


Assuntos
Aminoácidos/genética , Aminoácidos/isolamento & purificação , Células Procarióticas , Algoritmos , Análise por Conglomerados , Biologia Computacional , Genoma Bacteriano , Genômica , Filogenia , Células Procarióticas/classificação , Software , Especificidade da Espécie
8.
PLoS One ; 15(10): e0236305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33105476

RESUMO

The Indian River Lagoon, located on the east coast of Florida, USA, is an Estuary of National Significance and an important economic and ecological resource. The Indian River Lagoon faces several environmental pressures, including freshwater discharges through the St. Lucie Estuary; accumulation of anoxic, fine-grained, organic-rich sediment; and metal contamination from agriculture and marinas. Although the Indian River Lagoon has been well-studied, little is known about its microbial communities; thus, a two-year 16S amplicon sequencing study was conducted to assess the spatiotemporal changes of the sediment bacterial and archaeal groups. In general, the Indian River Lagoon exhibited a prokaryotic community that was consistent with other estuarine studies. Statistically different communities were found between the Indian River Lagoon and St. Lucie Estuary due to changes in porewater salinity causing microbes that require salts for growth to be higher in the Indian River Lagoon. The St. Lucie Estuary exhibited more obvious prokaryotic seasonality, such as a higher relative abundance of Betaproteobacteriales in wet season and a higher relative abundance of Flavobacteriales in dry season samples. Distance-based linear models revealed these communities were more affected by changes in total organic matter and copper than changes in temperature. Anaerobic prokaryotes, such as Campylobacterales, were more associated with high total organic matter and copper samples while aerobic prokaryotes, such as Nitrosopumilales, were more associated with low total organic matter and copper samples. This initial study fills the knowledge gap on the Indian River Lagoon bacterial and archaeal communities and serves as important data for future studies to compare to determine possible future changes due to human impacts or environmental changes.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Células Procarióticas/classificação , Rios/microbiologia , Poluentes Químicos da Água/análise , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Estuários , Florida , Sedimentos Geológicos/análise
9.
Microbiome ; 8(1): 134, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938501

RESUMO

BACKGROUND: Sequencing prokaryotic genomes has revolutionized our understanding of the many roles played by microorganisms. However, the cell and taxon proportions of genome-sequenced bacteria or archaea on earth remain unknown. This study aimed to explore this basic question using large-scale alignment between the sequences released by the Earth Microbiome Project and 155,810 prokaryotic genomes from public databases. RESULTS: Our results showed that the median proportions of the genome-sequenced cells and taxa (at 100% identities in the 16S-V4 region) in different biomes reached 38.1% (16.4-86.3%) and 18.8% (9.1-52.6%), respectively. The sequenced proportions of the prokaryotic genomes in biomes were significantly negatively correlated with the alpha diversity indices, and the proportions sequenced in host-associated biomes were significantly higher than those in free-living biomes. Due to a set of cosmopolitan OTUs that are found in multiple samples and preferentially sequenced, only 2.1% of the global prokaryotic taxa are represented by sequenced genomes. Most of the biomes were occupied by a few predominant taxa with a high relative abundance and much higher genome-sequenced proportions than numerous rare taxa. CONCLUSIONS: These results reveal the current situation of prokaryotic genome sequencing for earth biomes, provide a more reasonable and efficient exploration of prokaryotic genomes, and promote our understanding of microbial ecological functions. Video Abstract.


Assuntos
Planeta Terra , Genoma/genética , Genômica/estatística & dados numéricos , Microbiota/genética , Células Procarióticas/classificação , Células Procarióticas/metabolismo , Análise de Sequência/estatística & dados numéricos , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bases de Dados Genéticas , Alinhamento de Sequência
10.
Biosystems ; 198: 104234, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889101

RESUMO

Within the framework of the active media concept, we develop a biophysical model of autowave self-organization which is treated as a hierarchy of active media in the evolution of the biosphere. We also propose a mathematical model of the autowave process of speciation in a flow of mutations for the three main taxonometric groups (prokaryotes, unicellular and multicellular eukaryotes) with a naturally determined lower boundary of living matter (the appearance of prokaryotes) and an open upper boundary for the formation of new species. It is shown that the fluctuation-bifurcation description of the evolution for the formation of new taxonometric groups as a trajectory of transformation of small fluctuations into giant ones adequately reflects the process of self-organization during the formation of taxa. The major concepts of biological evolution, conditions of hierarchy formation as a fundamental manifestation of self-organization and complexity in the evolution of biological systems are considered.


Assuntos
Algoritmos , Evolução Biológica , Eucariotos/classificação , Especiação Genética , Modelos Teóricos , Células Procarióticas/classificação , Eucariotos/citologia , Eucariotos/genética , Genoma/genética , Mutação/genética , Células Procarióticas/metabolismo , Especificidade da Espécie , Fatores de Tempo
11.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32727974

RESUMO

Growth temperature is one of the most representative biological parameters for characterizing living organisms. Prokaryotes have been isolated from various temperature environments and show wide diversity in their growth temperatures. We herein constructed a database of growth TEMPeratures of Usual and RAre prokaryotes (TEMPURA, http://togodb.org/db/tempura), which contains the minimum, optimum, and maximum growth temperatures of 8,639 prokaryotic strains. Growth temperature information is linked with taxonomy IDs, phylogenies, and genomic information. TEMPURA provides useful information to researchers working on biotechnological applications of extremophiles and their biomolecules as well as those performing fundamental studies on the physiological diversity of prokaryotes.


Assuntos
Bases de Dados Factuais , Células Procarióticas/fisiologia , Genoma , Filogenia , Células Procarióticas/classificação , Temperatura
12.
Nat Microbiol ; 5(8): 987-994, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514073

RESUMO

The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.


Assuntos
Archaea/classificação , Bactérias/classificação , Archaea/genética , Bactérias/genética , DNA Bacteriano , Metagenoma , Filogenia , Células Procarióticas/classificação , Análise de Sequência de DNA , Terminologia como Assunto
13.
PLoS One ; 15(5): e0232029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374732

RESUMO

BACKGROUND: Translationally controlled tumor protein (TCTP) is a conserved, multifunctional protein involved in numerous cellular processes in eukaryotes. Although the functions of TCTP have been investigated sporadically in animals, invertebrates, and plants, few lineage-specific activities of this molecule, have been reported. An exception is in Arabidopsis thaliana, in which TCTP (AtTCTP1) functions in stomatal closuer by regulating microtubule stability. Further, although the development of next-generation sequencing technologies has facilitated the analysis of many eukaryotic genomes in public databases, inter-kingdom comparative analyses using available genome information are comparatively scarce. METHODOLOGY: To carry out inter-kingdom comparative analysis of TCTP, TCTP genes were identified from 377 species. Then phylogenetic analysis, prediction of protein structure, molecular docking simulation and molecular dynamics analysis were performed to investigate the evolution of TCTP genes and their binding proteins. RESULTS: A total of 533 TCTP genes were identified from 377 eukaryotic species, including protozoa, fungi, invertebrates, vertebrates, and plants. Phylogenetic and secondary structure analyses reveal lineage-specific evolution of TCTP, and inter-kingdom comparisons highlight the lineage-specific emergence of, or changes in, secondary structure elements in TCTP proteins from different kingdoms. Furthermore, secondary structure comparisons between TCTP proteins within each kingdom, combined with measurements of the degree of sequence conservation, suggest that TCTP genes have evolved to conserve protein secondary structures in a lineage-specific manner. Additional tertiary structure analysis of TCTP-binding proteins and their interacting partners and docking simulations between these proteins further imply that TCTP gene variation may influence the tertiary structures of TCTP-binding proteins in a lineage-specific manner. CONCLUSIONS: Our analysis suggests that TCTP has undergone lineage-specific evolution and that structural changes in TCTP proteins may correlate with the tertiary structure of TCTP-binding proteins and their binding partners in a lineage-specific manner.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Evolução Molecular , Especiação Genética , Sequência de Aminoácidos , Animais , Biomarcadores Tumorais/química , Sequência Conservada , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Fungos/classificação , Fungos/genética , Humanos , Invertebrados/classificação , Invertebrados/genética , Mamíferos/classificação , Mamíferos/genética , Simulação de Acoplamento Molecular , Filogenia , Células Vegetais/classificação , Células Vegetais/metabolismo , Células Procarióticas/classificação , Células Procarióticas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade da Espécie , Proteína Tumoral 1 Controlada por Tradução
14.
Int J Syst Evol Microbiol ; 70(5): 3561-3562, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32392120

RESUMO

We propose emending section A(1)(b) of Appendix 9 of the International Code of Nomenclature of Prokaryotes with further guidelines for the formation of compound specific or subspecific epithets based on localities and epithets based on binomial names of plants or animals.


Assuntos
Células Procarióticas/classificação , Terminologia como Assunto , Guias como Assunto
15.
Int J Syst Evol Microbiol ; 70(5): 3559-3560, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375977

RESUMO

Principle 3 of the International Code of Nomenclature of Prokaryotes (ICNP) states that the scientific names of all taxa are Latin or latinized words treated as Latin regardless of their origin. They are usually taken from Latin or Greek. Recently we encountered cases where newly proposed names were based on words from Modern Greek that are not derived from words found in the dictionaries of Classical Greek. In our opinion, there is no special reason why Modern Greek words not found in the classical language should have a special status in the ICNP. We therefore propose modifying Principle 3, Recommendation 6, Rule 7, Rule 65 and Appendix 9 of the ICNP to specify the special status of Classical Greek besides Latin.


Assuntos
Idioma , Células Procarióticas/classificação , Terminologia como Assunto
16.
Int J Syst Evol Microbiol ; 70(4): 2937-2948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32242793

RESUMO

In prokaryotic taxonomy, a set of criteria is commonly used to delineate species. These criteria are generally based on cohesion at the phylogenetic, phenotypic and genomic levels. One such criterion shown to have promise in the genomic era is average nucleotide identity (ANI), which provides an average measure of similarity across homologous regions shared by a pair of genomes. However, despite the popularity and relative ease of using this metric, ANI has undergone numerous refinements, with variations in genome fragmentation, homologue detection parameters and search algorithms. To test the robustness of a 95-96 % species cut-off range across all the commonly used ANI approaches, seven different methods were used to calculate ANI values for intra- and interspecies datasets representing three classes in the Proteobacteria. As a reference point, these methods were all compared to the widely used blast-based ANI (i.e. ANIb as implemented in JSpecies), and regression analyses were performed to investigate the correlation of these methods to ANIb with more than 130000 individual data points. From these analyses, it was clear that ANI methods did not provide consistent results regarding the conspecificity of isolates. Most of the methods investigated did not correlate perfectly with ANIb, particularly between 90 and 100% identity, which includes the proposed species boundary. There was also a difference in the correlation of methods for the different taxon sets. Our study thus suggests that the specific approach employed needs to be considered when ANI is used to delineate prokaryotic species. We furthermore suggest that one would first need to determine an appropriate cut-off value for a specific taxon set, based on the intraspecific diversity of that group, before conclusions on conspecificity of isolates can be made, and that the resulting species hypotheses be confirmed with analyses based on evolutionary history as part of the polyphasic approach to taxonomy.


Assuntos
Genômica/métodos , Filogenia , Células Procarióticas/classificação , Terminologia como Assunto , Algoritmos
17.
Int J Syst Evol Microbiol ; 70(4): 2163-2164, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32213248

RESUMO

In the past 3 years, a large number of emendations of circumscriptions of species, subspecies and higher taxa were published outside the International Journal of Systematic and Evolutionary Microbiology (IJSEM) that only marginally modify the earlier circumscription and may not meet the requirements of Rule 35 of the International Code of Nomenclature of Prokaryotes. Thus far, these emendations were included in the Lists of Changes in Taxonomic Opinion in the IJSEM. The list editors propose to list in the future only meaningful emendations that in their opinion significantly modify the diagnostic characters or the circumscription of taxa.


Assuntos
Filogenia , Células Procarióticas/classificação , Terminologia como Assunto
18.
Curr Microbiol ; 77(6): 1135-1138, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32006104

RESUMO

The formation and use of the scientific names of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes. Originally deriving from the 1935 revision of the International Code of Botanical Nomenclature, it retains the treatment of scientific names as Latin words. Above the rank of genus the rank is generally denoted by a single, standardised suffix. This has great advantage in text mining and database infrastructure where the identification of the standardised suffix can automatically be linked to the rank at which the scientific name is being used. The only exception at present are names at the rank of class where, although a standardised suffix has been proposed (-ia) it does not allow one to unambiguously identify the rank of the scientific name, since it is also a suffix used at the rank of genus. In addition, due to the fact that the suffix at the rank of class was not regulated in earlier versions of the International Code of Nomenclature of Bacteria, there are names that do not follow the standardised suffix. Uniformity would be an advantage. The problem and a proposed solution are discussed.


Assuntos
Células Procarióticas/classificação , Terminologia como Assunto , Gerenciamento de Dados , Mineração de Dados
19.
Nature ; 577(7791): 519-525, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942073

RESUMO

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Células Eucarióticas/classificação , Modelos Biológicos , Células Procarióticas/classificação , Aminoácidos/metabolismo , Archaea/metabolismo , Archaea/ultraestrutura , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Evolução Molecular , Genoma Arqueal/genética , Sedimentos Geológicos/microbiologia , Lipídeos/análise , Lipídeos/química , Filogenia , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura , Simbiose
20.
Trends Microbiol ; 28(4): 266-275, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31753537

RESUMO

Magnetoreception is the sense whereby organisms geolocate and navigate in response to the Earth's magnetic field lines. For decades, magnetotactic bacteria have been the only known magnetoreceptive microorganisms. The magnetotactic behaviour of these aquatic prokaryotes is due to the biomineralization of magnetic crystals. While an old report alleged the existence of microbial algae with similar behaviour, recent discoveries have demonstrated the existence of unicellular eukaryotes able to sense the geomagnetic field, and have revealed different mechanisms and strategies involved in such a sensing. Some ciliates can be magnetically guided after predation of magnetotactic bacteria, while some flagellates acquired this sense through symbiosis with magnetic bacteria. A report has even suggested that some magnetotactic protists could biomineralize magnetic crystals.


Assuntos
Eucariotos/metabolismo , Fenômenos Magnéticos , Magnetismo , Magnetossomos/metabolismo , Células Procarióticas/metabolismo , Biomineralização/fisiologia , Eucariotos/química , Eucariotos/ultraestrutura , Magnetossomos/química , Magnetossomos/ultraestrutura , Células Procarióticas/classificação , Células Procarióticas/ultraestrutura , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...